The compound you described, **1-(1-adamantyl)-2-[(1-oxido-2-pyridin-1-iumyl)thio]ethanone**, is a synthetic organic molecule that has shown potential in research for several reasons:
**1. Structure and Properties:**
* **Adamantyl Group:** The adamantyl group is a bulky, rigid, and stable structure. This makes the molecule relatively resistant to degradation and provides a unique chemical environment.
* **Pyridinium Oxime:** The pyridinium oxime moiety is a functional group that often exhibits biological activity, particularly in neurochemistry and drug development. It can act as a potent inhibitor of certain enzymes.
* **Thioester:** The thioester linkage can be targeted for specific reactions and modifications.
**2. Research Applications:**
* **Antioxidant Activity:** The pyridinium oxime group has been shown to exhibit antioxidant properties, potentially protecting against cellular damage caused by free radicals. This is important in studying neurodegenerative diseases and aging.
* **Enzyme Inhibition:** This molecule has been investigated as a potential inhibitor of certain enzymes, particularly those involved in neurotransmission. This could lead to the development of new drugs for treating neurological conditions.
* **Metal Complexation:** The sulfur atom in the thioester can bind to metal ions, making this molecule useful for studying metal-ligand interactions and potentially for applications in catalysis and material science.
* **Probing Biological Systems:** The unique structure of this molecule allows for its use as a tool for studying biological processes. It can be labeled with radioactive isotopes or fluorescent dyes and used to track specific events within cells.
**Importance for Research:**
The combination of the adamantyl group, pyridinium oxime, and thioester functionality makes this molecule a promising candidate for various research areas, including:
* **Drug Discovery:** Exploring its potential as a therapeutic agent for neurological disorders, inflammatory conditions, or other diseases.
* **Materials Science:** Studying its ability to form complexes with metal ions and its potential for use in creating new materials with specific properties.
* **Analytical Chemistry:** Utilizing its unique properties for developing new analytical methods and probes for biological systems.
**Note:** It's essential to remember that this molecule is still under investigation and its exact applications and importance are still being determined through ongoing research.
ID Source | ID |
---|---|
PubMed CID | 4173597 |
CHEMBL ID | 1558612 |
CHEBI ID | 115724 |
Synonym |
---|
MLS001006084 |
smr000349130 |
CHEBI:115724 |
HMS2706H19 |
1-(1-adamantyl)-2-(1-oxidopyridin-1-ium-2-yl)sulfanylethanone |
AKOS017003388 |
CHEMBL1558612 |
Z18545314 |
1-(1-adamantyl)-2-[(1-oxido-2-pyridin-1-iumyl)thio]ethanone |
Q27198075 |
SR-01000036652-1 |
sr-01000036652 |
Class | Description |
---|---|
aryl sulfide | Any organic sulfide in which the sulfur is attached to at least one aromatic group. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Putative fructose-1,6-bisphosphate aldolase | Giardia intestinalis | Potency | 31.5479 | 0.1409 | 11.1940 | 39.8107 | AID2451 |
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 12.5893 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 10.0000 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
phosphopantetheinyl transferase | Bacillus subtilis | Potency | 15.8489 | 0.1413 | 37.9142 | 100.0000 | AID1490 |
TDP1 protein | Homo sapiens (human) | Potency | 23.7246 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
thioredoxin glutathione reductase | Schistosoma mansoni | Potency | 89.1251 | 0.1000 | 22.9075 | 100.0000 | AID485364 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 39.8107 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 14.1254 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
serine/threonine-protein kinase PLK1 | Homo sapiens (human) | Potency | 26.6795 | 0.1683 | 16.4040 | 67.0158 | AID720504 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 100.0000 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 35.4813 | 0.0079 | 8.2332 | 1,122.0200 | AID2546 |
DNA dC->dU-editing enzyme APOBEC-3F isoform a | Homo sapiens (human) | Potency | 3.1623 | 0.0259 | 11.2398 | 31.6228 | AID602313 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 19.9526 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
TAR DNA-binding protein 43 | Homo sapiens (human) | Potency | 14.1254 | 1.7783 | 16.2081 | 35.4813 | AID652104 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
RNA polymerase II cis-regulatory region sequence-specific DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
double-stranded DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
RNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
mRNA 3'-UTR binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
lipid binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
identical protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
pre-mRNA intronic binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
molecular condensate scaffold activity | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
intracellular non-membrane-bounded organelle | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleus | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
perichromatin fibrils | TAR DNA-binding protein 43 | Homo sapiens (human) |
mitochondrion | TAR DNA-binding protein 43 | Homo sapiens (human) |
cytoplasmic stress granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nuclear speck | TAR DNA-binding protein 43 | Homo sapiens (human) |
interchromatin granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
chromatin | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |